Matematika

Pertanyaan

nomor 15 sertakan cara
nomor 15 sertakan cara

2 Jawaban

  • Materi PECAHAN ALJABAR

    [tex] \displaystyle \frac{x^2 - 7x + 6}{x^2 + x - 2} \times \frac{x^2 - 2x - 8}{x^2 - x - 12} \\ = \frac{\cancel{(x-1)}(x-6)}{(x+2)\cancel{(x-1)}} \times \frac{\cancel{(x-4)}(x+2)}{\cancel{(x-4)}(x+3)} \\ = \frac{x-6}{\cancel{x+2}} \times \frac{\cancel{x+2}}{x+3} = \frac{x-6}{x+3} [/tex]
  • Aljabar

    15.)

    x^2 - 7x + 6/x^2 + x - 2 × x^2-2x-8/x^2-x-12

    => (x-6)(x-1)/(x+2)(x-1) × (x-4)(x+2)/(x-4)(x+3)
    Coret yg sama

    => (x-6)/(x+2) × (x+2)/(x+3)

    => x^2 + 2x -6x - 12 / x^2+3x+2x+6

    => x^2 -4x - 12 / x^2 + 5x + 6

    => (x-6)(x+2) / (x + 3)(x+2) (Coret)

    => x-6 / x+3